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Smooth Function Modeling for On-Line Trajectory 
Reshaping Application 

Ajay Verma*, Kalyan Vadakkeveedu† 
Knowledge Based Systems, Inc. 

Michael W. Oppenheimer‡ and David B. Doman§ 
AFRL/VACA 

Online vehicle trajectory reshaping is desired for a class of autonomous air 
vehicles such as RLVs in order to avoid catastrophic failure when subjected to 
performance restricting damages and failures. An Adaptive Trajectory Reshaping 
and Control1 (ATRC) system is envisioned that responds to altered vehicle conditions 
by continuously retargeting and reshaping the reference RLV trajectory satisfying 
the feasibility constraints. On-line trajectory reshaping to determine a feasible 
reference trajectory is computationally a difficult problem for real time 
applications. ATRC is exploring the principles of vehicle dynamics inversion for on-
line generation of feasible reference trajectory. Two essential components for 
generating reference trajectory for air-vehicles using “inverse dynamics” 
methodology are aerodynamic model of the vehicle that is representative of the 
current state of the vehicle, and a framework for modeling the vehicle trajectory. 
Physics based modeling software such as Missile DATCOM allows fast computation 
of aerodynamic coefficients for given flight points and the results can be stored in 
tabular form. However, for efficient real-time trajectory reshaping application, it is 
desirable to represent aerodynamic coefficients in smooth functional forms that are 
governed by a few parameters. Similarly, trajectories must also be represented by 
smooth functions. In this paper we present modeling of smooth functions using a set 
of basis functions that are suitable for aerodynamic modeling and trajectory 
reshaping of the air vehicles. A desirable feature for function modeling is the easy 
imposition of boundary as well as mid point constraints in the function using a small 
number of parameters without limiting the scope of the function. In this paper we 
present a design method for generating orthonormal polynomial basis functions in 
one and two dimensions with constraints.  

I. Introduction 
The large potential for space utilization is not being exploited as it is currently inhibited by the huge 

cost of launching operations. The benefits of advanced space utilization can be greatly increased by making 
space utilization more affordable The Reusable Launch Vehicle (RLV) programs are targeted towards 
affordable space utilization. However, to maintain the economical viability of RLVs, it is important to 
enhance operational safety and reliability by providing the RLV the capability to respond to various 
uncertainties and evolving emergency situations. Responding to an uncertain environment after a 
damage/failure presents many tough technical problems for this class of vehicles. These problem manifests 
                                                           
* Senior Researcher, 1408 University Dr, College Station, TX-77840, Senior Member AIAA, 
averma@KBSI.com.  
†Researcher, 1408 University Dr, College Station, TX-77840, Member AIAA, 
kvadakkeveedu@KBSI.com.  
‡Electronics Engineer, 2210 Eighth Street, Bldg. 146, Rm. 305, WPAFB, OH 45433-7531, Member AIAA, 
Member AIAA, Michael.Oppenheimer@wpafb.af.mil 
§Senior Aerospace Engineer, 2210 Eighth Street, Bldg. 146, Rm. 305, WPAFB, OH 45433-7531, Associate 
Fellow AIAA, David.Doman@wpafb.af.mil 
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in the following challenges that must be overcome: First, to adequately determine and model the dynamic 
characteristics of the vehicle in the altered state after a damage/failure; second, to estimate the new 
constraints and limitation(s) of the vehicle; third, to adapt and reconfigure the command, control and 
guidance of the vehicle to the modified system dynamics; and fourth, to design and plan a new feasible path 
with respect to the end goal maximization. A high percentage of such damage/failure cases leave the 
vehicle in an uncontrolled and uncertain environment with a high probability of ultimately entering a state 
of catastrophic failure. The high cost of loss resulting from catastrophic failures, has prompted researchers 
in the direction of developing technologies to assist in minimizing such failures.  

 
Damage to a vehicle or a sub-system failure may result in modification of the applicable trajectory 

constraints and/or the dynamical behavior of the system, consequently making the previously designed 
reference trajectory infeasible. An acceptable trajectory for a dynamical system is a solution of a two-point 
boundary value problem for a set of governing differential equation of motion. The real world systems such 
as air vehicles are highly non-linear systems and impose a set of constraints on the trajectory variables as 
well as control variables. In inverse dynamics approach, a trajectory is specified first, which results in 
solving a set of algebraic equations, yet strictly satisfying the non-linear differential equations of a non-flat 
system. 

 
In this paper first we introduce the architecture of an Adaptive Trajectory Reshaping and Control 

(ATRC) system for the general class of RLV systems, which is based on the principles as described in Ref. 
[1]. Next we discuss the general inverse dynamics approach for trajectory reshaping of RLVs and the 
motivation for functional modeling. For trajectory determination, there are two types of functions that must 
be modeled. The first set of functions is needed to describe the vehicle trajectory. The functions for the 
spatial coordinates of the vehicle constitute a vehicle trajectory. These trajectory functions are normally 
functions of one independent variable. The second set of functions that must be modeled in real time is the 
modified aerodynamic constraints. The aerodynamic constraints are modeled by defining aerodynamic 
coefficients for the flight envelope of the vehicle. Mostly, these functions are two dimensional with Mach 
and angle of attack being the independent parameters. For faster convergence, it is desired that the 
functions be smooth, with continuity in the value as well as first derivative. A general approach to model a 
function is to parameterize the function and then determine the parameters that satisfy any governing 
constraints to a satisfactory level. In Section IV, we describe a novel approach for designing a set of basis 
functions with a class of constraints built in, that reduces the complexity of the solution and results in better 
approximations. 

 

II. Adaptive Trajectory Reshaping and Control (ATRC) System 
The ATRC system enhances RLV capability to avoid catastrophic failure when subjected to 

performance restricting damages and failures. The overall goal of ATRC translates into specific 
requirements for design and development of functionalities related to adaptable and reconfigurable 
command, control, and guidance system for the RLVs. and real time solution techniques for  generating 
feasible trajectories.  

 
Figure 1 shows the general architecture of the envisioned ATRC system for RLVs. Note that the above 

structure is specific to longitudinal motion of the vehicle; however, it can be easily extended to the six 
degrees of freedom. The main components of the envisioned ATRC system requires: 

1. On-line system identification that includes physics based modeling that accounts for vehicle damage, 
parameter estimation and parameter projection for constraint boundary determination.  The constraint 
boundaries influence the trajectory reshaping of the vehicle. 

2. Real time trajectory determination for reshaping reference trajectory under feasibility constraints.  

3. Adaptive, closed loop control and guidance system for reference trajectory tracking.  
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Figure 1.  Architecture of ATRC 

III. Inverse Dynamics Approach for Trajectory Generation 
The advantage of inverse dynamics approach is that one can avoid integration of differential equations 

of motion altogether. The main difference between regular trajectory generation approach and inverse 
dynamics approach is that that in the latter approach we first parameterize the trajectory and then use 
numerical techniques  to solve for these parameters that minimize the objective function and satisfy other 
inequality constraints. Note that once a smooth trajectory is specified, the time derivatives of the trajectory 
parameters are also fixed. With the availability of state and its time derivatives, the differential equations 
become simple algebraic equations, which is much faster to solve than  differential equations.  

A. Reference Trajectory Design  
To determine a trajectory for a non-linear dynamic system, a solution must be found that satisfies the 

set of differential equations governing the dynamics of the system.  Further, the trajectory solution should 
not violate some non-linear constraints, which limits the operation capability of the system.  For an aircraft, 
the constraints arise due to several factors such as limitations on the angle of attack, load factor, 
aerodynamic heating, and actuator saturation.   

 
There are two primary approaches for trajectory generation and these have been classified in the 

literature [2] as the “integral approach” and the “differential approach.” In any approach, where generation 
of a trajectory involves the integration of the equations of motion, this approach is classified as the 
“integral approach.”  In a differential approach, an assumed functional form for trajectory is differentiated 
to obtain algebraic functions for the higher derivatives, which are required to impose constraints on the 
control inputs for the “inverse dynamics” solution. There are various applications where inverse dynamics 
have been used, such as spacecraft trajectories and path planning in robotics [3] and overhead cranes [4].  
Historically, the inverse dynamics approach has been used for “differentially flat” systems.  A system is 
“differentially flat” [see 5,6] if there exists a set of outputs, known as “flat outputs,” such that there is a 
one-to-one correspondence between the trajectories of flat outputs and the full state and control inputs of 
the system. In our approach, we use an inverse dynamics approach for determining trajectory as this allows 
us to solve algebraic equations instead of integrating ODEs. With the inverse dynamics approach for 
aircraft trajectories, a problem arises due to inherent under-actuation in most of the aircrafts.  For a six-
degrees-of-freedom (6DOF) aircraft, there are normally four controls: thrust, elevator, aileron, and rudder.  
Ref. [7] defines a novel trajectory generation scheme, which uses pseudo forces for inverse dynamic 
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computation.  In this paper we concentrate on function modeling approach to make the inverse dynamic 
solution approach more efficient. 

B. Inverse Dynamics Approach 
Assume x  be the state vector for a vehicle and ( )τxx =  represent a reference trajectory of the vehicle. 

The goal of the inverse dynamic approach is to design an inverse trajectory such that the trajectory and the 
corresponding solution for control inputs satisfy all constraints. The governing equations of motion for an 
air vehicle may be approximated with terms that are non-linear with respect to some of the states and linear 
with respect to some others. For example, if 1x  and 2x  are the subset of the state vector x , a typical 
governing equation may be written in the form 

 
 ( ) ( ) ( )uxCxxCxCx 1321211 ++=& , (1) 
 
where ( ) ( ) ( )xxx xCxCxC 321 ,, are non-linear functions in 1x , and the over all function is linear with 

respect to 2x  and control inputs .u  For example, the pitch dynamics of a vehicle for longitudinal dynamics 
can be written as  

 
 ( ) ( ) ( ) eMCqMCMCqI

eq mmmYY δααα
δ

,,, ++= 0& ,  (2) 

 
where [ ]α,Mx =1 , ,eu δ= and 321 CCC ,,  are YYmYYmYYm ICICIC

eq δ
,,0 respectively. The inverse 

dynamic solution for Eq. (1) can be written as  
 
 ( ) ( ) ( )( )212111

1
3 xxCxCxxCu +−= − &  (3) 

 
However, note that the existence of 1

3
−C  may not always be guaranteed for any arbitrary trajectory. In 

the event of any damage to the RLV , the reference trajectory must be re-designed in view of the altered 
vehicle dynamics. For a feasible solution, a numerical iterative approach is used [7], where the reference 
trajectory is perturbed until feasibility is ensured. To facilitate perturbation of the vehicle trajectory, the 
trajectory must be parameterized. Generally, the trajectory design must meet certain constraints on end 
points, and sometimes there may be constraint at mid points. In this paper we will present functional 
modeling that allows function parameterization as well as ensures any constraints on the reference 
trajectory. For fast convergence of the numerical solution to the inverse problem , it is desired that the 
vehicle model, represented by terms 31 ,,, L=iCi be  smooth functions. As the vehicle dynamics are 
altered, the altered coefficient functions ( )1xCi  must be re-determined on-line. 

 
If the damage condition is known, physics based modeling techniques, such as the approach used by 

Missile DATCOM [8], can determine the numerical values of the coefficient functions at various flight 
points. In our approach, we first determine the vehicle coefficients in tabular form spanning the designed 
flight envelope. However, we require a framework to capture the coefficients in functional forms such that 
the non-linear functions are continuous and smooth. In the following sections we address the design of a set 
of constrained orthonormal bases, followed by one dimensional trajectory modeling, and two-dimensional 
coefficient functional representation in parametric form.   

IV. Constrained Orthonormal Polynomial Basis Functions 
In this section we present an approach to design orthonormal polynomial basis functions with desired 
constraints built in. The choice of basis functions ultimately influences the complexity of modeling  the 
desired functions or behaviors. It is well known that a sub set of a complete set of basis functions can 
approximate any given function to a desired accuracy by choosing a sufficient number of basis functions 
elements in the sub set. However, if a function to be approximated must meet certain constraints, it presents 
various problems. First, a finite set of basis function may not ensure the constraint- satisfaction on the 
function to be approximated. Second, a large number of basis functions may be required for the satisfactory 
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constrained approximation. Now, if we can create a set of basis functions, where all the basis functions 
satisfy the given constraints, any linear combination of those functions will also satisfy the given 
constraints. With this motivation we developed an approach to design a constrained orthonormal 
polynomial basis functions. To explain our approach, we first present a way for generating one-dimensional 
unconstrained orthonormal polynomial based basis functions and then extend it to generate constrained 
orthonormal polynomial basis functions. 

A. One Dimensional Basis Functions with Built-In Constraints 
 
Let ( )xiΦ  represent the ith 1D basis function of the orthonormal polynomial basis set  given as: 

 L,,,)(
,

10
0

==Φ ∑
=

ixax
ik

k
ki  (4) 

Notice that the ith basis function has i+1 polynomial coefficients to be determined. We impose the given 
constraints on each of the basis functions. E.g. if a desired constraint is that the modeled function g(x) 
should be zero at x = 0.5, then we create a new basis function set where ( ) ( )( ))5.0(, −⊗Φ=Φ xxx iiC

, where 

⊗  is the polynomial multiplication(or 1D convolution of the polynomial coefficients). ( ) 0=xg  for all the 
functions in the space spanned by this new basis set. The Gram-Schmidt procedure is applied to this 
constrained basis set to generate an orthonormal basis set.   
The inner product between any two functions in this space is defined as  

 ( ) ( ) ( ) ( )dxxxxx kiki ∫ ΦΦ=ΦΦ
1

0

, . (5) 

The norm and the orthogonality conditions can be obtained as: 

 ( )( ) 1
1

0

2 =Φ∫ dxxi ,     Normalizing condition. (6) 

 ( ) ( ) 1100
1

0

−==ΦΦ∫ ikdxxx ki ,,,, L ,     Orthogonality condition. (7) 

The orthogonality condition gives i independent equations while an additional equation from normalization 
ensures that all the coefficients ikak ,, 0= can be obtained.  
 
For automatically generating the orthogonal basis set we use the Gram-Schmidt recursive approach. 
Assuming that we already know 10 −=Φ ikk ,, . Define an arbitrary starting polynomial ( )xfi

0  of degree i. 

For k = 0 to i – 1 we determine ( )xf k
i

1+  as 

 ( ) ( ) ( ) ( ) ( )xxfxxfxf k
k

k
kk

iii
ΦΦ−=+1  (8) 

The ith basis function )( xiΦ  is now given as 

 ( ) ( )xfx i
ii =Φ  (9) 

Next we will extend the above formulations to impose a given set of constraints. The constraint can be 
specified on the function value or higher derivatives at specified points. A typical nth order constraints is 
given as: 

 
( )

( )
0=

∂
Φ∂

=αx
n
i

n

x
x

 (10) 

 
Before we describe an approach to determine constrained orthogonal polynomial basis functions, we 

note some properties of polynomials. A polynomial satisfies an nth order constraint as given in Eq. (10) at 
α=x  when α  is the root of the reduced polynomial obtained through n differentiations. Also note that a 

polynomial of degree m trivially satisfy any constraint of order more than m, while constraints of order m or 
less must be imposed by adjusting the polynomial coefficients. Sometimes, a polynomial of degree m may 
not exist that satisfy all the constraints, especially when there are too many constraints of order m and lees 
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that must be imposed. In this case the mth degree polynomial will not be a part of constraint orthogonal 
basis functions.  

 
For constrained orthogonal polynomial function, first we define a set of polynomial functions of all 

possible degrees that satisfy the given constraints. Next, we use Gram-Schmidt scheme to orthogonalize 
and normalize the functions to form a basis function set. The ith function ( )xfi  starting from 0=i  is 
determined in the following iterative manner.  

Set ( ) ixxf
i

=0 .  
Next extract the lowest order constraint from the given set of constraints that must be imposed. If the 

lowest order constraint has order m, and <m degree ( )k
if , then incorporate the constraint. Incorporating a 

constraint also increases the degree of the polynomial function. Repeat the process for the next lowest order 
constraint, until the lowest order constraint is equal to the current degree of ( )k

if . Figure 2 and Figure 3 
show some examples of a class of orthogonal basis functions that incorporate the given constraints. The 
example presents normalized orthogonal basis functions in the range 0 to 1. 
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(a)                                                                                  (b) 

Figure 2. Constrained Polynomial Basis Functions.  (a) Basis Function are constrained to be Zero at 
x = 0.5. (b) Both, function and its derivative are constrained to be Zeros at x = 0.5 

In Figure 2(a), the value of the function is constrained to be zero mid way, i.e. ( ) 050 == .xxf  Figure 2(b) 
adds an additional constraint on the slope of the curve or the first derivative of the function given as 

( ) 050 == .xdxxdf .  In Figure 3, the application of the constraint has been shifted to the quarter point, i.e. 
250.=x . In this case, the basic nature of orthogonal basis functions remains the same, albeit with a loss of 

symmetry. Figure 2 and Figure 3 demonstrate the ability to generate a range of readily available sets of 
constrained orthogonal polynomial basis functions.  
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(a)                                                                                  (b) 

Figure 3. Constraint Polynomial Basis Functions.  (a) Basis Function are Constraint to be Zero at x = 
0.25. (b) Both, Function and its Derivative are Constrained to be Zeros at x = 0.25 

B. Two-Dimensions Ortho-Normal Polynomials Basis Functions 
In this section we demonstrate an approach to produce a set of polynomial orthonormal basis functions 

in two dimensions, represented by x and y  with maximum degree of MN ,  respectively. First we 
introduce the vector space of two-dimensional polynomials and then the algorithm to generate orthonormal 
basis vectors. 

 
1. Matrix Representation of 2D Polynomials 

 
Let MN ,P  be a set of polynomials where ( ) MNyxP ,, P∈ is a polynomial in x and y of degree N and M 

respectively. Let the coefficients be ija . 

( ) 00
00

1
1

0
0

1
1 yxayxayxayxayxayxP MN

MN
M

M
MN

MN
MN

NM ++++++= −
−

−
− LL, , 

or 
 ∑ ∑= =

−− ⋅⋅= N
i

M
j

jMiN
ji yxayxP 1 1 ,),( . (11) 

Let us represent the polynomial coefficients in matrix form as, 
 

 

1,1000,2100

1012111

021

++−−

−−−−−−

−−

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

NMNNN

MMNMNNM

MMNMNNM

aaaa

aaaa
aaaa

A

L

MOMM

L

L

. (12) 

 
Then the polynomial ( )yxP ,  can be represented in matrix form as,  

 ( ) AYXyxP T=, , (13) 
where, 
    



EXTENDED ABSTRACT 

 
American Institute of Aeronautics and Astronautics 

 

8

 

1

1

1
+

−

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

N

N

N

x

x

X
M

 , and

1

1

1
+

−

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

M

M

M

y

y

Y
M

. (14) 

  
 

2. Representation of a 2D Polynomial Inner Product Vector Space 
 
Let MN ,P  be a set of polynomials in x and y of degrees up to N and M respectively. The polynomial set 

MN ,P  defines a polynomial vector space over R (set of real numbers) with  
 
 { }

MjNi
ji

jiji yx
≤≤≤≤

==Θ
00 ,,, |θθ  (15) 

as the basis vectors that satisfy the basic properties of associativity, commutativity, existence of identity 
and inverse, and properties of scalar multiplication. In order to define orthogonality, we must define an 
inner product space. An inner product space is a vector space with an additional structure of inner product. 
We define the inner product on the 2D polynomial vector space as,  
 

 ∫ ∫ ⊗=
1

0

1

0

dydxyxQyxPyxQyxP ),(),(),(),,( ,      MNyxQyxP ,),(),,( P∈ . (16) 

 
Our goal is to construct an orthonormal basis for the polynomial vector space MN ,P . As a first step we 
compute an orthonormal basis functions set of vectors using the Gram-Schmidt procedure. Then we 
approximate the function based on its projection on the basis functions.  
 

3. Constrained Orthonormal Basis Set for 2D Functions 
 

Many times we would like to represent a class of functions in terms of basis functions that must satisfy 
certain constraints. For an efficient representation, we would like to construct a set of basis functions 
satisfying the given constraints in addition to the orthonormality condition. In this report we restrict our 
discussion to three types of constraints; constraints on (i) the function value, (ii)  function value and first 
derivative or (iii)  only on the first derivative. In the following we describe the generation of 2D 
constrained basis functions. 
 

(i) If the constraints are imposed only on the value of the function along the curve C(x,y) = 0, the 
polynomial basis set Θ  is modified to introduce the constraints and create a new basis set CΘ . 
The new basis set is given by,  

( ) ( ){ }yxCyxjiC ,,, ⊗=Θ θ . 
The symbol ⊗ denotes polynomial multiplication (or equivalently discrete convolution of the 
polynomial coefficients). Any function g(x,y) that lies in  the space spanned by CΘ  satisfy the 
constraint that, along the curve C(x,y) = 0, g(x,y) = 0. 
 
Note that the basis set CΘ  is not yet orthonormal. The constrained orthonormal basis set CΦ  is 
constructed using the Gram-Schmidt orthogonalization procedure. See Figure 4 for an example of 
the orthonormal basis functions generated using this procedure. The basis set CΘ  and the 
orthonormal basis set CΦ  span the same function space. 
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(ii) If the constraints are imposed on the value as well as the derivatives along a curve C(x,y) = 0, 
a constrained basis set CΘ  is computed from the original basis set Θ  as,  

( ) ( ){ }),(,,, yxCyxCyxjiC ⊗⊗=Θ θ . 
The symbol ⊗ denotes polynomial multiplication (or equivalently discrete convolution of the 
polynomial coefficients). Any function g(x,y) that lies in  the space spanned by CΘ  satisfy the 
constraint that, along the curve C(x,y) = 0, g(x,y) = 0 and g'(x,y) = 0. The constrained orthonormal 
basis set CΦ  is constructed using the Gram-Schmidt procedure as discussed in the previous 
section. Figure 5 shows an example of the orthonormal basis functions generated. 
 

(iii) Constraint only on the derivative of the function. We then modify the given polynomial Θ  as, 
( ){ } ( ){ }{ } ( ) ),(,,, 0,00,0 yxCyxCyxyxC ⊗⊗−Θ∪=Θ θθ . 

Figure 6 gives an example of orthonormal functions generated with constraints only on the derivatives. 
 

 
Figure 4. Orthonormal basis function set of polynomials in x and y of degrees 2 and 2, with the 

constraint that at x+y = 1, the value of the function is zero. 
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Figure 5. Orthonormal basis function set of polynomials in x and y of degrees 2 and 2, with the 

constraint that at x+y = 1, the value and derivatives of the function are zero. 

 
Figure 6. Orthonormal basis function set of polynomials in x and y of degrees 2 and 2, with the 

constraint that at x+y = 1, the derivative of the function is zero. 
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V. One-Dimensional Function Modeling with Constraints using Basis Functions 
Often we need to estimate or model non-linear functions that must satisfy some constraints. For 

example, the inverse dynamic solution approach requires parameterization of multiple system output 
variables or the trajectory variables with some constraints imposed on them. Note that the feasible 
trajectory must also satisfy the governing differential equations. The trajectory parameters are determined 
using an optimization process that minimizes the error between trajectory variables and the solution of the 
governing equations. Note that if some of the trajectory constraints, such as the boundary constraints are 
forced in the trajectory parameterization itself, it helps in reducing the complexity of the optimization 
problem. This work extends the approach followed in Verma et al [7,9] for representing trajectory in 
functional form that is useful to impose boundary and in-point constraints. To prescribe a smooth trajectory 
functional for a specific trajectory coordinate, the position coordinate is represented by a twice 
differentiable, smooth function so that velocity and acceleration can be uniquely defined. The path for an 
individual position coordinate is defined as a function of normalized time / ft Tτ = , where fT  is the total 
time for the maneuver. An individual coordinate trajectory is structured to have two parts, a base trajectory 
and a perturbation of the base trajectory. If ( )τP  is the ith coordinate, it is chosen to be of the form  

 ( ) ( ) ( ) ( )∑
=

+=
l

j
jjPPP

1
10 τϕατττ  (17) 

Here ( )τ0P  is the base trajectory function, which is chosen such that it satisfies any boundary or mid 
point constraints for the trajectory. One example approach ( )τ0P  could be chosen as a minimum degree 
polynomial spline that satisfies the desired constraint conditions. The base trajectory by itself may not be a 
true solution of the governing equations and hence an infeasible trajectory. To make the trajectory feasible, 
we add a second term on the right hand side of the trajectory equation. The perturbation term must be 
designed to ensure that the overall trajectory function ( )τP  is the solution of the governing equations. 
Perturbation term is defined using a set of orthonormal basis functions ( ){ } ljj ,,1, L=τϕ  that are modified 

by the term ( )τ1P . The term ( )τ1P  is a weight polynomial constraining the perturbation term to contribute 
zero value for the already satisfied desired constraints by base trajectory ( )τ0P . For example ( )τ1P  can be 
chosen as 
 ( ) ( ) ( )qp baP −−= τττ1 , (18) 
where p  and q  are integers, usually less or equal to 3. The integers p  and q  depend upon the highest 
order condition match required at times a=τ  and b=τ  respectively. For example, when boundary 
conditions at 0=τ  and 1=τ  up to acceleration level must be imposed on the trajectory function, ( )τ1P can 

be chosen as ( )33 1−ττ . The drawback of this approach is that the after basis functions jϕ  are modified by 

( )τ1P , it looses the orthogonality, which makes it computationally harder to determine the coefficients for 
the trajectory solution.  
 
In this paper, we extend the one dimensional function modeling by incorporating the constraints in the basis 
functions set as explained in the Section IV.A, thus eliminating the need for enforcing constraints by an 
extra term ( )τ1P .  

VI. Aerodynamic Coefficient Function Estimation 
An important goal of the ATRC system is the adaptive reshaping of the RLV trajectory in the presence 

of altered dynamic characteristics of the vehicle when unexpected damage occurs in the various operating 
scenarios. Any damage to a vehicle that has an impact on the external shape of the vehicle, or that creates 
an impediment in normal functioning of the control surfaces, results in alteration of the vehicle’s 
aerodynamic characteristics. Figure 7 and Figure 8 show few examples of the Pitch moment coefficient 
variation in the presence of various damage scenarios. Since the aerodynamic behavior of the vehicle is 
captured in aerodynamic coefficients that are used for the design of vehicle control and trajectory planning, 
it becomes mission critical to adapt reference trajectory for the altered vehicle dynamics. Hence we need an 
approach to build a smooth on-line aerodynamic model. Physics based modeling software such as Missile 
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DATCOM allows fast computation of aerodynamic coefficients for given flight points and the results can 
be stored in tabular form. However, for efficient real-time trajectory reshaping application, it is desired to 
represent aerodynamic coefficients in smooth functional form that are governed by few parameters. In this 
section, we present a piecewise continuous and smooth function model in two dimensions. 
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Figure 7. Moment Coefficient with AOA for 

Nominal and Various Failure Cases 
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Figure 8. Moment Coefficient with Mach for 

Nominal and Various Failure Cases 

A. Physics Based Aerodynamic Modeling 
Given the geometry of the vehicle, very good estimations of the aerodynamic coefficients can be 

generated based on Physics based modeling in a very small time. For example, if damage on the vehicle is 
characterized adequately, the DATCOM technology allows specification of the altered geometry of the 
vehicle to compute the corresponding aerodynamic coefficients at desired points of the flight envelope. In 
our approach, we generate a large number of data points for the aerodynamic coefficients using DATCOM 
technology and then fit a piecewise continuous and smooth function to create a functional model for 
vehicle aerodynamics. The functional form is later used for trajectory reshaping. 

B. Finite Element Function Approximation 
 
We formulate the aerodynamic coefficient function with a set of parameters. First we show our 

approach for piecewise continuous and smooth one-dimensional function, which is later extended to two-
dimensions. We used a finite element modeling approach so that the approximation function would capture 
local variations in an efficient manner. Ref.[10, 11] demonstrates the use of finite element piecewise 
approximation for mapping geopotential. Ref. [6, 8] applied the technique for aerodynamic coefficients 
representation. First, the argument space of the function is divided to form a grid with one control point at 
every grid point. At each control point we use a local polynomial function that is determined using a 
weighted, least square method from a given set of nominal data generated from DATCOM.  

 
If a function is available at few data points, a continuous function can be obtained by interpolation. 

Note that interpolation in input space of pℜ  is a surface in 1+ℜ p  space. The interpolation in strict sense 
can be defined in the following manner. Suppose, given N  points: p

Nqqq ℜ∈,,, L21  and N  scalars: 
ℜ∈Naaa ,,, L21 , we wish to find a function f  such that Niaqf ii ,,,)( L1== . A standard way of 

interpolation is to use the Lagrange polynomials. However, when number of data points is large, the degree 
of polynomial becomes high that may result in excessive undesirable modulations in the functions. Another 
simple approach is to linearly interpolate between the adjacent points. The linear interpolation preserve the 
function values at the given data points, but smoothness is lost. For smoothness, the continuity of the first 
derivative of the approximated function must be ensured. In some cases, not only there is more knowledge 
about the function value, but also we may know or we can estimate the slope of function behavior. For 
example, the DATCOM model can estimate the aerodynamic coefficients and certain dynamic derivatives 
at a given flight point. In this case it is desired that besides continuous derivative for smoothness, the values 
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of first derivatives are also preserved. In our functional modeling approach for vehicle aerodynamic model, 
we wish to preserve the function value and the estimated function slopes. 

 
4. One-Dimensional Finite Element Approximation 
 
A major benefit of using a finite-element approach is that in this approach local approximations for the 

function model are used that are simpler and more accurate. Here we present a finite element approach for 
modeling the function. First we define a set of control points that divides the input domain in many finite 
elements. Next, at each control point we obtain a local polynomial approximation of the function based 
upon the input data. The scope of each local polynomial centered at the control point lies in between the 
adjacent grid points (see Figure 9). Notice the overlapping of local polynomials that helps in obtaining a 
smooth function over the entire range. Once local approximations are determined, a smooth global 
approximation is obtained as a weighted combination of the local approximations. The smoothness of the 
approximation function implies that the function, as well as its first derivative, is continuous. Notice that 
grids are not restricted to be equidistant. To capture nonlinearity effectively, more control points should be 
placed near high non-linearity. Figure 9 uses a second order polynomial function for local approximations.  

 
A highlight of this Finite Element approximation is that it preserves the local function value and its first 
derivative at its control point. This is achieved by a smooth weighting function that gracefully goes from 
unity to zero, from one control point to another, without contributing to a first derivative at both control 
points. The weighting function for the two overlapping local approximation curves is given as  
 

( ) ( )qqqW 211 2
1 +−=)( ,  )()( qWqW 12 1−= , 

 
where q  is the normalized coordinate with the origin at the first control point. Note that the weighting 
function ensures that 101 =)(W , 002 =)(W  at the first control point and similarly, 011 =)(W , 112 =)(W  
at the second control point. If )( qf1 and )( qf2  are two local approximations, the weighted global 
approximation )( qF  between two control points is given as  
 

)()()()()( qfqWqfqWqF 2211 += . 
 
 Figure 10 shows the final approximated function that is made of the weighted combinations of the local 
function approximations. 
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Figure 9:  Local Approximations Centered at 
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Figure 10:  Smooth Functional Approximation 

using Weighted Local Approximations 

 
 

5. Multi-Dimensional Finite Element Approximation 
In this section we extend the formulation for FEM modeling for multi dimensional functions. Let F  be 
given as 
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 1 2( , , , )nF F q q q= L , (19) 
and we have to determine an estimate 1 2

ˆ ( , , , )nF q q qL  from a finite element model. As in one-

dimensional case, we assume that the domain of F  is covered with finite number of equidistant nodes. 
Each preliminary local approximation 

1 2, , , ni i iF L  is valid in the 2 2 2× × ×L  hypercube centered at a node 

represented by n  indices given as ( )1 2, , , ni i iL . Each index is numbered in increasing order for the 

nodes lying in its dimension. Consider a hyper cube formed by 2n  nodes, each node representing a corner 
of the hyper cube. The final approximation 

1 2, , , ni i iF L  is valid in the unit hypercube whose “lower left 

corner” is ( )1 2, , , ni i iL . We shift the origin of the coordinates to the node ( )1 2, , , ni i iL  that has the 
lowest indices in each dimension. The local coordinates are normalized as 

 

,

, 1 ,

j

j j

j j i
j

j i j i

q q
q

q q+

−
=

−
. (20) 

Let us define a function W  as a function of the normalized coordinate jq  as 

 
2( ) (1 ) (1 2 )j j jW q q q= − + . (21) 

Now the weight function for an arbitrary corner node ( )1 2 1, , , 1, 1, ,k k ni i i i i++ +L L  of the hyper cube 
can be written as 

 1 2 1, , , 1, 1, , 1 2 1( ) ( ) (1 ) (1 ) ( )
k k ni i i i i k k nw W q W q W q W q W q

++ + += − −L L L L ,  

 for   0 1, 1jq j n≤ ≤ = L . (22) 
The weight function defined by Eq. (22) has the following properties:  

• Weight is unity at its own node and, it is zero at any other node or edge formed by other 
nodes. 

•  Summation of all the weights corresponding to the corner nodes of the hyper cube at any 
point inside the hyper cube is equal to one. 

The estimated function F̂  can be defined in terms of normalized coordinates centered at node 
( )1 2, , , ni i iL  as 

 
1 2 1 2

2

1 2 , , , , , , , ,
1

ˆ ( , , , )
n

n nn i i i j i i i j
j

F q q q w F
=

=∑ L LL
. (23) 

6.  An Example of Finite Element Function Approximation for Functions of Two Variables. 
Let Z be the matrix of values of a function sampled at the grid points of a 2D space defined by x and y. We 
are interested in representing the function Z in closed form, using 2D polynomial approximation. The 
closed form representation can be used to evaluate the function Z at arbitrary x and y points. We 
approximate the function Z using a number of 2D polynomial function elements of a smaller area of 
support. The number of function elements to be used and the degrees of the polynomials in x and y are 
inputs to the algorithm. We specify this by the x and y coordinates of the control points as separate vectors. 
Note that the control points lie exactly on the grid points. At these data points, the approximated value of 
the function Z equals the value of the local function centered at that control point. The chosen 
approximation is locally optimal in the least squared error criteria (i.e., within the area of support of each 
function element). 
To formulate finite element function approximation satisfying certain constraints, we proceed as follows. 
The orthonormal basis set of functions are computed that satisfy the constraints and then searched for local 
functions that are optimal in the vector space spanned by the constrained orthonormal basis functions, 
based on least square optimality criteria. More details on the finite element function approximation can be 
found in [7].  
 
Concentrating on the finite element function approximation method for 2D functions, we initially 
proceeded by calculating the weights in the x and y directions separately. The actual weight function at 
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each point in the grid is the product of the x and y weights at that location. The x and y weight functions 
satisfy the criteria that at the current control point location, it has a value of one and gradually decreases to 
zero as it moves away. The products of the 1D weight functions also satisfy the same criteria in the 2D x-y 
plane. The intended consequence of this property is that the approximated function value will be equal to 
the value of the local function at the control point.  
Figure 11 shows an example of a weight function in the 2D plane that is the product of the two 1D weight 
functions. 
 

 
Figure 11. Weight function centered at a control point. The value is one at the location of the control 

point and gradually decreases and reaches zero at the neighboring control points. 

Figure 12 shows the results of finite element approximation for the CM coefficient for a non-damaged 
(baseline) spacecraft with 16 control points along the Mach axis and 21 control points along the alpha axis. 
The basis functions were polynomials of degree 2 in x and 2 in y. . 
 

 
Figure 12. Finite element function approximation. (a) Given function the CM coefficient for baseline 

(b) FEM Approximated Function (c) Error between the given and approximated functions. 16 
control points along the Mach axis and 21 control points along the alpha axis were used for FEM 

approximation. Each local function is a polynomial of degree 2 in x and 2 in y. 
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VII. Conclusion 
In this paper we addressed the function modeling techniques to facilitate an efficient on-line inverse 

dynamics methodology for trajectory reshaping of the RLVs. We presented a technique for generating 
orthonormal polynomial basis functions with in-built function constraints at divers points of the function. 
The general approach allows the constraints ranging from the function value, to constraints on values of the 
higher derivatives of the functions. Next we presented a finite element approach for modeling 
multidimensional, piecewise continuous and smooth functions The use of FEM based smooth modeling and 
use of constrained orthonormal basis function are expected to improve the convergence of iterative 
numerical solution for dynamic inversion problem.  
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